然有曲率存在,而并非一般的平直空间。”

“所以我在想,如果我们能以ads为理论基础,整合出一个能够描述引力子的模型,然后再去寻找它在宇宙中的迹象……”

“这样一来,有没有可能不需要达到普朗克能级,就能够发现引力子的存在呢?”

黄昆闻言一怔。

不过很快,他便消化起了杨振宁的想法。

ads是一个数学上没有问题的场方程特解,和民科或者那些没有根据的猜想完全不是一个性质——很多人提及时空,都会下意识以为是科幻小说的概念。

但实际上这些科幻概念之所以会出现,有相当多都是因为已经有了物理或者数学上的模型。

当初的曲率引擎是阿库别瑞度规这事儿已经提过好几遍了,这里另外举个例子。

1916年的时候。

奥地利物理学家路德维希·弗拉姆提出了虫洞的概念。

1935年。

爱因斯坦和纳森罗森对虫洞理论进行了完善,他们对称了虫洞的度规,引入径向分量grr和该虫洞喉咙的径向坐标r0,做出了一个数学模型,叫做爱因斯坦罗森桥。

这玩意儿就是后世几乎所有科幻小说里飞船会穿越的虫洞——这玩意儿真是个数学模型……

这还没完呢。

按照原本历史发展。

眼下这个时期再过一年,罗伯特·富勒和约翰·惠勒就会发表论文证明:

如果虫洞连接同一个宇宙的两个地方,那么这类虫洞是不稳定的。

没错,是证明,而不是猜想。

所以时空这玩意儿在物理界也好,数学界也罢,并不是一个很玄乎的概念——真正玄乎的不是【时空】,而是【文明】。

爱因斯坦罗森桥如此,此时的杨振宁同样如此。

杨振宁用非常正式……或者说严肃的态度引入了ads理论,这个理论由于场方程的限制保持着对称性,也就是维持理论的基本框架。

但与此同时。

他又摒除了广义相对论中不支持引力子存在的“场”概念,转而在元强子……也就是标准粒子模型中寻找一个合适的支点作为伙伴。

再然后以这个全新的组合理论,来寻找可能存在的引力子。

换而言之。

这应该是一个专门为引力子而适配的模型。

想到这里。

黄昆不由看向了杨振宁,问道:

“老杨,除了ads之外,你搭配的另一个支点理论是什么?”

杨振宁这次却没有直接回答他,而是望向了一直没怎么出声的李政道:

“你的看法呢?”

李政道抬起眼皮,意味深长的看了杨振宁一眼。

杨振宁的这句话可不是在暗指李政道只听不说,更不是想让李政道出丑,而是想给李政道一个展现自己能力的机会。

毕竟黄昆如今可是华夏的学部委员,他此行除了迎接杨振宁等人之外,更兼具了初步观察几人的职责。

或许他本人由于专业问题没法实时听懂一些理论,但只要回去把这些消息一复述,国内自然会有听得懂的人来做出判断。

“……”

随后李政道沉默了几秒钟,缓缓说出了自己的答案:

“我认为……可以用量子系统方程作为切入,因为它可以在某些情景下不引入引力的概念。”

众所周知。

量子力学一共有四大关键方程:

薛定谔方程、海森堡方程、狄拉克方程和密度矩阵方程。

不过李政道所说的量子系统方程并不是以上任意之一,而是一个涉及到了纯态的方程。

量子系统一般都用态矢量来表示,即本正交态的系统性质。

随后李政道写下了一个有些复杂不便展示的表达式,将它与杨振宁此前的ads度规靠到了一起。

杨振宁则全程没有表达反驳,也就是说李政道的思路和他是一致的。

黄昆则将两张纸挪到了面前,开始做起了组合。