间差得出的数值。

比如一辆车第1秒钟距离20米,第2秒钟距离50米。

那么它的速度就是用距离的差(50-20=30)除以时间差(2-1=1),结果就是30/s。

不知道大家从这两个例子里发现了什么没有?

没错!

用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。

那么……

如果把这两个过程合到一块呢?

那是不是就可以说:

距离的差除以一次时间差,再除以一次时间差就可以得到加速度?

当然了。

这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。

如果把距离看作关于时间的函数,那么对这个函数求一次导数:

就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数。

对速度的函数再求一次导数,就得到了加速度的表示。

鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。

是的。

之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置!

所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。

因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导af/at,再求一次偏导数就加个2上去。

因此很快。

包括法拉第在内,所有大佬们都先后写下了一个数值:

加速度a=a2f/at2。

而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了:

f=t·s(θ+Δθ)-t·sθ=μ·Δxa2f/at2。

随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许:

“罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?”

徐云点了点头:

“当然可以。”

f=t·s(θ+Δθ)-t·sθ=μ·Δxaa2f/at2。

这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。

因此还需要对它进行一番改造。

至于改造的思路在哪儿呢?

当然是sθ了。

只见徐云拿起笔,在纸上画了个直角三角形。