正是小牛总结出的牛二定律。

众所周知。

小牛第一定律告诉我们“一个物体在不受力或者受到的合外力为0的时候会保持静止或者匀速直线运动状态”,那么如果合外力不为0呢?

小牛第二定律就接着说了:

如果合外力f不为零,那么物体就会有一个加速度a,它们之间的关系就由f=a来定量描述。

也就是说。

如果我们知道一个物体的质量,只要你能分析出它受到的合外力f。

那么我们就可以根据小牛第二定律f=a,计算出它的加速度a。

知道加速度,就知道它接下来要怎么动了。

随后徐云又在函数图像的某段上随意取了两个点。

一个写上a,一个写上b,二者的弧度标注为了△l。

写完后将它朝小麦面前一推:

“麦克斯韦同学,你来分析一下这段区间收到的合外力试试?不考虑重力。”

小麦闻言一愣,指了指自己,诧异道:

“我?”

徐云点了点头,心中微微一叹。

今天他要做的事情对于法拉第、对于电磁学界、或者说大点对于整个人类的历史进程,都会有着极大的促进意义。

但唯独对于小麦和赫兹二人而言,却未必是个好事。

因为这代表着有些原本属于他们的贡献被抹去了。

就像某天一个月薪4000的打工人忽然知道自己原本可能成为亿万富翁,结果有个重生者以‘人类共同发展’为由把属于你的机会给夺走了,你会作何感想?

平心而论,有些不公平。

所以在徐云的内心深处,他对小麦是有些愧疚感的。

往后怎么补偿小麦另说,总之在眼下这个过程里,他能做的便是让小麦尽可能的进入这些大佬的视线里。

当然了。

小麦并不知道徐云内心的想法,此时他正拿着钢笔,刷刷刷的在纸上写着受力分析:

“罗峰先生说不考虑重力,那么,就只要分析波段ab两端的张力t就行了。”

“波段ab受到a点朝左下方的张力t和b点朝右上方的张力t,彼此对等。”

“但波段的区域是弯曲的,因此两个t的方向并不相同。”

“假设a点处张力的方向跟横轴夹角为θ,b点跟横轴的夹角就明显不一样了,记为θ+Δθ。”

“因为波段上的点在波动时是上下运动,所以只需要考虑张力t在上下方向上的分量。”

“b点处向上的张力为t·s(θ+Δθ),a点向下的张力为t·sθ,那么,整个ab段在竖直方向上受到的合力就等于这两个力相减……”

很快。

小麦在纸上写下了一个公式:

f=t·s(θ+Δθ)-t·sθ。

徐云满意的点了点头,又说道:

“那么波的质量是多少呢?”

“波的质量?”

这一次。

小麦的眉头微微皱了起来。

如果假设波段单位长度的质量为μ,那么长度为Δl的波段的质量显然就是μ·Δl。

但是,因为徐云所取的是非常小的一段区间。

假设a点的横坐标为x,b点的横坐标为x+Δx。

也就是说绳子ab在横坐标的投影长度为Δx。

那么当所取的绳长非常短,波动非常小的时候,则可以近似用Δx代替Δl。

这样绳子的质量就可以表示为……

μ·Δx

与此同时。

一旁的基尔霍夫忽然想到了什么,瞳孔微微一缩,用有些干涩的英文说道:

“等等……合外力和质量都已经确定了,如果再求出加速度……”

听到基尔霍夫这番话。

原本就不怎么喧闹的教室,忽然又静上了几分。

对啊。

不知不觉中,徐云已经推导出了合外力和质量!

如果再推导出加速度……

那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗?

想到这里。

几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。

说起加速度,首先就要说说它的概念:

这个是用来衡量速度变化快慢的量。

加速度嘛,肯定是速度加得越快,加速度的值就越大。

比如我们经常可以听到的“我要加速啦”等等。

假如一辆车第1秒的速度是2/s,第2秒的速度是4/s。

那么它的加速度就是用速度的差(4-2=2)除以时间差(2-1=1),结果就是2/s2。

再来回想一下,一辆车的速度是怎么求出来的?

当然是用距离的差来除以时